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1 Introduction

Here are my lecture notes for Neuromatch Academy 2020, Week Two. It
consists of reviews of some of what we covered and new presentation of the
content. I’ve tried to structure these notes to emphasise portions as they
relate to neuroscience or psychology. I’ve combined this with some necessary
mathematics, while also trying to emphasise the connections between topics
to place them in some coherent, overarching mental framework. As such,
these notes are aimed primarily at neuroscientists, psychologists, cognitive
scientists—not physicists, mathematicians, or statisticians—but there will
be a bit of maths here and there.

I hope you enjoy learning about these things, and I hope you felt like you
got something useful from NMA, even if it was simply exciting discussion,
or a new appreciation for statistics or for neuroscience.

With that, let’s begin by looking at inference.

2 Bayes’ Theorem—A Probabilistic Interpretation

2.1 What is Inference?

Inference is, in the logical or epistemological sense, a conclusion reached
on the basis of evidence and reasoning. Given some evidence, we may infer
something about what we are looking at—for example, Sherlock Holmes
solved crimes by induction, a method of reasoning where the truth of the
conclusion of an inductive argument is probable, based upon the evidence
given.

In some cases, when we are viewing a system, we are only able to observe
something—e.g. make a measurement, or experience some sensory percep-
tion. In the absence of noise or other latent variables which might affect this,
this would be perfectly fine, as this assumes a one-to-one mapping between
our observation and the system that produced that observation. However,
given some noise or some variable that affects the system output, we can no
longer be sure that our observation reflects the system faithfully. How do we
know anything about the system then? Is our reality actually our reality?

Luckily, we can utilise a number of inference techniques to say with exact
certainty what we do indeed know about the underlying system giving rise
to our observations. Inference allows us to ‘lift the veil’ in this very specific
sense.
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2.2 What is a Prior?

In the broadest sense, a prior is some previous sense of the system we are
observing. It is intuition, based on experience. Formally, a prior probability
distribution is the probability distribution that would express one’s beliefs
about this quantity before some evidence is taken into account. If we have a
model about how a system behaves, or in other words, a long term inference,
it is the probability that the inferred conclusion is true on its own.

2.3 What is a Posterior?

A posterior indicates we are evaluating our model in light of some evid-
ence, in the form of P (I | O). This is the probability of our conclusion given
some evidence—a data point, or an observation, perhaps. Or, in the case
of iteration to perfect an inference, it could be a new observation, arriving
after we have adjusted our model to increase our posterior.

2.4 Bayes’ Theorem

Bayes’ theorem finds our posterior, or our inference given an observation.
In order to find this, it multiplies the likelihood function (which you should
be familiar with by now—given an inference we want to fit to data, we go
in reverse, fitting our data to the inference to determine whether our data is
likely to be true if our model is absolutely true) with our prior model, and
puts this over the probability for our observation. This is indicated by

P (I | O) =
P (O | I) · P (I)

P (O)
.

Where do these components come from? The likelihood gets multiplied
by the prior as a result of a simple mathematical rule. The following axiom
is true, probabilistically:

P (A | B) =
P (A ∩B)

P (B)
,

or, that the conditional probability of any event A given B is equal to the
probability of A and B over the probability of B.

Keeping the notation for our inference making, model building frame-
work, and the associated meanings, it states that the probability of our
inference being true given our observation is the probability of our observa-
tion and our inference both being correct, normalised to the probability of
our observation being correct (so as to be robust to false conclusions).
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We may apply the Product Rule here to determine the following:

P (A ∩B) = P (B | A) · P (A)

and so we arrive at Bayes’ theorem by substituting the above expression
into our conditional probability.

Here, we are saying that in order to evaluate how good our inference
is if we have an observation, we need to consider the probability we would
see our observation if our inference were indeed correct, the probability that
our inference is correct, and the probability that our observation is not an
outlier. It follows from a couple of simple lemmas about the probability of
events, and yet, has a very powerful sole interpretation.

We may examine this further if we take the following: consider the set
of events (possible inferences, or explanations, for our measurement) we
are evaluating, I1, I2, I3, . . . In. We say that this set of events partitions our
sample space S. If this is the case, then the following is necessarily true:

P (O) = P (O | I1) · P (I1) + . . .+ P (O | In) · P (In).

S

OI1 I2

Figure 1: The Partition Theorem. A geometric proof of the partition
theorem shows how an observed set of values sampled from a sample space
S decomposes over inferences.

This is the law of total probability, or the partition theorem, and the
intuition behind it is simple: it states that if one sought to find P (O) as it
depended on a number of different other variables, or partitions, they could
look at a partition of the sample space S in which these variables depend
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on each other, and add the amount of probability of O that falls in each
partition.

From here we can rearrange Bayes’ theorem in such a way as to con-
sider competing inferences at their respective partitions, thereby evaluating
multiple possible inferences:

P (In | O) =
P (O | In) · P (In)∑
i P (O | Ii) · P (Ii)

.

Once again, the utility of Bayes’ theorem is clear. It allows us not only
to make, but to find optimal, inferences.

2.5 Tutorial Recap—Week Two Day One

On Monday, we began the week by looking at Bayesian Statistics. Bayes’
theorem allows us to make an ‘inference’ about something, or an estimate
about the true value of some hidden variable of something, based on some
model of the environment. Let’s lay some groundwork for how the brain
processes stimuli, and then use it to understand what is going on in this
tutorial. After that, we’ll go through some of the important functions to
gain some insight into how we actually implement this.

Some notes on the tutorial content for the day are in this section, as a
companion to Week Two Day One.

If you are unclear about the point of Bayesian inference for cognition, it
may be wise to skip to section 3.1 where this is elaborated on.

Here we want to develop a Bayesian model for localising sounds based
on audio and visual cues. This model will combine prior information about
where sounds generally originate with sensory information about the like-
lihood that a specific sound came from a particular location. We are us-
ing a Gaussian distribution for our prior because it describes our problem
well—we have a peak where something is most likely, and a spread of other
likely values that compete for our certainty estimate.

In the first function we use a general form of the Gaussian function,
and so we normalise to restore it to a probability density (which has the
necessary condition of integrating or summing to one—mathematically, we
can’t have a density that encodes probabilities of events exceeding one). We
take the sum of all the points and we scale our density by that, so that each
point in the density is some proportion of one and thus each proportion
adds to one. An important note here is that one would typically normalise
by area, not total. See, for example, this: How to normalise a histogram
in MATLAB? This is related to the fact that, despite being described the
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same way, an integral is fundamentally not the same thing as a sum, and
so an area is not the same as a total. This fact is given by Fatou’s Lemma,
among others.

In our next function, exercise 2A, we multiply our various distributions
to find our posterior. We normalise again.

Next, we work with our posterior a little bit.
Our bonus looks at a bimodal prior, or two peaks—two locations where

we think our sound would likely be coming from. Looking at the graph,
we see our blue curve—the visual data—is closer to one peak of the prior,
corresponding to one spot we expect things to come from. This shifts our
posterior towards that peak (at µ = 3). The graph below it shows the
behaviour of our posterior for various visual peaks. When the visual peak
is closest to either prior peak, our posterior says we are most certain of that
location. When the visual peak is right in the middle, at 0, then we’re not
sure of either one.

Moving on to tutorial number two, we’re doing a slightly more complic-
ated inference. We’re no longer looking at what the brain is doing, as in
tutorial one—we’re harvesting priors from the brain and trying to infer what
the subject is thinking using Bayes’ theorem. It’s a different end goal now.
The text in section one covers this in greater detail.

Because our subjects learned there are two options—sound comes from
the poppet or from somewhere else—with a given likelihood—75% and 25%,
respectively—we need to build our prior accordingly. We have a prior with
a weighting p given to our prior distribution for common sources, and the
remaining 1− p is given to independent sources. We build this mixed prior
in such a way that one distribution encodes both options. Could we have
used a biomodal distribution for this? As long as were sufficiently careful
with the weightings as likelihoods, presumably, we could. A mixed prior is
much more useful here though, as one of the things we are trying to infer
is the parameter set that our subjects learn, or the weighting they ascribe
things.

The interactive demo allows us to look more at how this mixed prior
affects our posterior. The first observation is that σcommon has a much
larger affect on our prior than σindependent. This is because our weighting for
common sources is much higher. Our posterior doesn’t move much—that’s
because our σauditory is very low. We are very certain of what we are hearing,
and it could be that this surmounts even scenarios where we have high
uncertainty in our prior about where the sound might be coming from.
Playing with this interactive demo will provide very good insight into how
a prior affects a posterior, and thus, how learning affects estimation.
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Tutorial number three is a dense one, so I’ll go through it a bit more
carefully.

We begin by presenting a stimulus to the participants—this is x, the
position of which is known to the experimenter, but unknown to the subject
and their brain. The brain has some encoding of x, x̃, which is given by the
true x. Using the likelihood of a Bayesian model, the brain finds what the
encoding of x is likely to be based on the given stimulus—P (x̃ | x). The
brain has a prior for the location of x in the form of P (x), and the brain
combines all of this to form an estimate of the true location of x in light
of some known encoding, which is our posterior, P (x | x̃). A response, x̂,
occurs based on the posterior estimate.

Here, subjects need to find the location of a sound given the same prior
information as tutorial number two.

We will first pretend to be a brain and craft our likelihood. We want to
find the likelihood that our encoding is correct, and to do so we plot each
encoded x, x̃, with its given x.

In the plot in exercise one, we see that there is a more or less x̃ = x sort of
relationship between the two—this is good, because it means we’re encoding
mostly correctly. There is also a very small variance in this encoding given
an x, which means our encoding is certain.

We will make our prior next, using the same procedure as tutorial two.
We’re going to tile it so we have this prior for each of the likelihoods we
calculated previously. We are storing it in an array to make the associated
multiplication easy—we just multiply an index of one array with the other,
for every shared index.

If we look at the following plot, we will see the prior does not depend
on the encoding, and is centred at 0 for x’s true value. This means our
prior is independent of our likelihood and places x as coming from where x
actually is—this is good, because it means we assume we hear things from
where they are coming from, rather than from the place next to the source
or above it. If our clock is chiming the hour, and at the same time, a person
is talking to us, it wouldn’t be very good to hear this person go ‘bong’ and
the clock ask us how our day went. Good priors are how we cope with a
confusing world.

We do this multiplication to find our posterior and plot it, in the exercise
below. This gives us our plot for where we estimate x to be if we have
some encoding of x, x̃. It is clear that our prior has a large affect on our
estimate—we are most certain when x is closest to our prior of where x
is—zero. As the true x gets further from our prior we are less and less
certain—if we think of this as confusion about what we expect and what
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the data is saying, this should make sense.
The break, where the centre region of high certainty goes more vertical,

indicates that when our hypothesis corresponds to where x actually is (zero
offset, as measured by the x axis), our estimate depends less on our encoding.
This is also very good—it means that our estimate is robust to bad encodings
when our prior is strong enough. Even given a false encoding like −1, we
are still correct about x being 0 (on top of the true x).

So now we have made a posterior for where x should be given many differ-
ent possible x values. This doesn’t necessarily estimate x for us though—we’ve
only collected a bunch of information about different x and x̃ pairs. We will
now make an estimate of the position, which we will observe by proxy, look-
ing at the subjects response x̂. To do so, we will look at each encoding and
find the mean—the estimate with the most certainty. The point associated
with that estimate will go into our plot. We will proceed by placing a one
in that index and a zero everywhere else.

We see this takes exactly the shape of the centre of our posterior plot—this
is to be expected, because in taking the estimate of x, x̂, we are taking the
point of greatest certainty associated with the posterior plotted at x. In
other words, we are taking the centre of the line.

The remainder of the tutorial is where things get a bit strange.
Remember, we’re not being brains now, only pretending—in reality the

brain would make a single estimate given a single observation, not a number
of estimates for every possible pair of encodings and every possible x. This
is simply a model of what’s going on, and there are some artificial steps that
need to be taken, like generating a lot of input-output pairs so as to find the
patterns in the data.

The next step, in exercise five, is simply showing what our is encoding
when we use a single experimental stimulus with position 2.5. The respective
encoding is fairly constant at x̃ = 2.5, so we’re happy with our results—it
means in our experiment where we use 2.5, our subject’s brains are likely
to encode the right value, no matter what other hypothetical stimuli could
have been shown. If this seems backwards, don’t worry about it too much.
What this means in more explicit terms is we want the likelihood that of x̃
being compatible with the given x. In P (x̃ | x = 2.5), x is the true x set
by the experimenter, and the horizontal axis has the one hypothesised to be
true by the subject so that it is compatible with x̃. We only really need a
single argument marginal distribution, but to make computation more easily
visualised, we replicate it with a set of hypothetical x’s (hypothesised by the
brain), which are independent from the true x.

This will be used as our input array. In so doing, out of all the possible
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pairs we produced earlier, we are keeping only the encodings and estimates
that correspond to our actually given stimulus.

In our marginalisation step we are looking at finding x̂ from our density
characterised by the measurement of our estimate (our response, x̂) given
our encoding. We want to marginalise this latter variable out to get x̂ from
our real x. This is for us, the experimenter, to help determine what is going
on inside the brain—when the brain gets a stimulus of 2.5, what does the
response that reflects the estimate of the stimulus look like?

Our final step, in section seven, is to fit this model that we have created
to an actual subject who has been presented a stimulus 2.5 away (an inde-
pendent source). In doing so, we’ll be able to fit our model architecture to
their output, and assuming our model describes the person accurately, we’ll
be able to find the participant’s ‘parameters’ to determine how they have
made decisions. This is for the experimenter.

We’re performing model inversion, so as to test our model. Recall our
generative model for maximum likelihood estimate, which we resurrected as
a measure of model ‘correctness’ later when we looked at linear regression
concepts (e.g. GLMs). You’ll note the docstring for my Bayes model mse()
is ‘function fits the Bayesian model from Tutorial 4.’ What, precisely, are
we fitting, and how is it driven by a likelihood estimate? Earlier in the
tutorial we mixed our priors according to some weighting, so as to exhibit
a preference for one prior or the other. We use the usual generative model
process—generate a bunch of data for each parameter and see which matches
our true data, because that implies we have found the true parameter set, if
we assume a unique mapping between features or parameters characterising
a data set and the data it characterises.

Tutorial number four introduces a cost function for our estimate—a pen-
alty is now associated with a low certainty inference. This will allow us to
perfect our inference, if we continue to make it so as to minimise that cost
function.

3 Bayes’ Theorem—A Cognitive Perspective

3.1 Model Building and Inference

Why does the brain use Bayes’ theorem, and how does it do so? The
key is model building for environmental inference. The brain is well aware
that it observes the world around it in the presence of noise, in addition to
storing information as an encoding, rather than the truth of a thing. To
get around this, it builds a prior model based on experience about what
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inferences have been correct or not correct. It uses this model to infer the
cause of some observation, in order to connect the observation to the source
of the observation.

Take a simple example related to what we examined in the tutorial. A
person hears a noise in the woods. They can’t be sure where the noise came
from—the sound waves have bounced all about, diffracting around trees and
being dampened by the heavy thicket. Luckily, the brain has made many
inferences about sound travel over the years, and has built a prior model
for how woodland scrub affects sound travel. The brain will now make an
inference about the location from where the sound was coming from, and
then evaluate this inference by visual confirmation—if I see a the source of
the sound, I can say with certainty that it has come from the location I
inferred it from, thus my posterior is high. If I don’t see it, I can revise my
model and the inference that comes from it, in order to re-infer, and check
again.

Here, the inference comes from experience, an iterative, self corrective
form of Bayes’ theorem. We build a model which yields an inference, so they
are functionally synonymous at any given point; however, they represent
different things in the long term. Bayes’ theorem as a statistical method
is often an inference in a single point in time, telling me, simply, what is
the probability that a measurement has come from some underlying data.
In this case, there is a reward for building a good model, as we learn from
inferences both good and poor. Suppose the sound was a large, relatively
cross, brown bear—a good model can often mean the difference between life
or death. In later sections, we will examine reward.

3.2 Bayes’ Theorem and Theoretical Psychiatry

There is an increasingly large, though still relatively new, body of work
investigating the theoretical underpinnings of psychiatric disorder using this
Bayesian model of cognition. Various aspects of things like delusions, psy-
chosis, schizophrenia, and more can be connected to misprocessing of in-
formation or prediction error in the sense of Bayesian model building. I
highly recommend the work of Paul Fletcher and Phil Corlett as it relates
to this subject. Three good articles on this are included below.

Katthagen et al, 2018. Modeling subjective relevance in schizophrenia
and its relation to aberrant salience. PLOS Computational Biology, 14(8).

This study shows one element of misdirected or malfunctioning salience
in schizophrenia is due to poor estimation of importance for some data,
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based on poorly updated priors.
‘We found that subjects use Bayesian precision to estimate stimulus rel-

evance in order to integrate multidimensional information and adapt more
to the subjectively relevant stimuli... To conclude, our findings demonstrate
how individual beliefs about relevance can be inferred from computational
models. Furthermore, we suggest that aberrant salience observed in patients
with schizophrenia reflects an idiosyncratic bias in states of high subjective
uncertainty.’

Fletcher and Frith, 2009. Perceiving is believing: a Bayesian approach
to explaining the positive symptoms of schizophrenia. Nature Reviews Neur-
oscience, 10(1), 48–58.

This model states that poorly functioning prediction-error needs some
other intervention to adjust properly. This proposes a two factor model of
schizophrenia, wherein false perceptions modulate further false beliefs, by
model dysfunction.

‘Recent advances in computational neuroscience have led us to con-
sider the unusual perceptual experiences of patients and their sometimes
bizarre beliefs as part of the same core abnormality—a disturbance in error-
dependent updating of inferences and beliefs about the world. We suggest
that it is possible to understand these symptoms in terms of a disturbed
hierarchical Bayesian framework, without recourse to separate considera-
tions of experience and belief.’

Fleming et al, 2020. Drugs That Induce Psychotic Symptoms Acutely
Impair Mediated Learning in Rats. Biological Psychiatry, 87(9).

In this brief report, Leah Fleming, Phil Corlett, and their team invent-
ively show that a relationship exists between learning and psychosis by
administering drugs which create symptoms of psychosis and observing a
dysfunction in prediction based learning.

3.3 The Free Energy Principle for Action and Inference

One of the most popular theories of Bayesian Cognition today is Karl
Friston’s Free Energy Principle (FEP). I’ve endeavoured to explain it here.

One thing to note immediately is that this is a highly complex topic,
even for experts, even at an intuitive level. As Peter Freed of Columbia’s
department of psychiatry said, in his 2010 Research Digest for Neuropsy-
choanalysis:
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‘At Columbia’s psychiatry department, I recently led a journal
club for 15 PET and fMRI researchers, PhDs and MDs all, with
well over $10 million in NIH grants between us, and we tried
to understand Friston’s 2010 Nature Reviews Neuroscience pa-
per — for an hour and a half. There was a lot of mathemat-
ical knowledge in the room: three statisticians, two physicists,
a physical chemist, a nuclear physicist, and a large group of
neuroimagers — but apparently we didn’t have what it took. I
met with a Princeton physicist, a Stanford neurophysiologist, a
Cold Spring Harbor neurobiologist to discuss the paper. Again
blanks, one and all: too many equations, too many assumptions,
too many moving parts, too global a theory, no opportunity for
questions—and so people gave up.’

Let this not scare us off, lest we also make such a mistake as giving up.
Instead, keep in mind that it’s a difficult topic, and often poorly explained.
It’s perfectly fine to not be completely sure of the ‘why’ or the ‘how’.

We should begin with the matter of sensory inference. Inference comes
from models—a prior for what is a likely inference, or some experience about
how a system behaves in order to connect evidence with the sensory system
it interacts with. In other words, rarely does the brain simply take a guess.
Unlike what could be called ‘standard’ Bayesian inference, which makes an
inference and gives it a certainty, the inference we make is guided by a
perfected prior over time, to maximise our posterior in a given instant. This
is guided by prediction error, which we will examine later.

FEP posits that our brain can be modelled as having an internal state
dependent on sensory information. This is trivial—sensory information de-
termines what our brain is doing. Are the neurones in our visual system
firing in response to some stimulus? Is our Default Mode Network (resting
state) activation higher than it was previously, now that there’s no stimulus?
And so on. Additionally, from a thermodynamical perspective, information
is a physical construct, which can exert change on a system it is entering.
This is how entropy is measurable, or how disorder propagates in a closed
system. Since a state is merely a descriptor of the system, in the brain,
states depend on information.

Building on this foundation, FEP says that when information is surpris-
ing, this is a bad thing. This is indeed surprise in the entropic, thermo-
dynamical sense. When information exerts a change on our internal state,
the more surprising this information is, the more change occurs. Surprising
information causes disorder—this is because surprise is intimately linked
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with randomness and disorder. Disordered brain states mean death. We
want to therefore place a bound on disorder in the brain, which does two
things—makes information less surprising, implying an improved model; as
well as placing a restriction on the number of states the brain can be in for
optimal performance. FEP is indeed related to a control theory approach,
which is something we’ve seen before—FEP says that surprise and therefore
states must be properly regulated.

Rather than using surprise, which is a hidden variable, we use free energy,
which is a function of sensory states and internal states. Minimising free
energy allows us to bound surprise and thus maintain some order in our
brains. Free energy is at a minimum when our model, encoded in our internal
states, is correct (or corrected). There are two ways of doing so—learning
(revising our model in response to our environment) or action (changing our
environment to agree with our model).

This is rather a high level overview, with the interest of not becoming
overwhelming. We’ve inadvertently touched on reward and prediction error,
learning, decision making, action, information theory, and the thermody-
namical nature of cognition. As one can tell, FEP is very powerful as a
unifying explanation for many phenomena. Unfortunately, there are many
critiques of it, and it has not much to say in response. In my opinion it has
a central flaw, which is that it inherits the flaws of the theories it seeks to
explain. Issues such as the Dark Room Problem and metaphysical dualism,
as well as questions about the assumptions that have gone into the mathem-
atics behind it, are difficult for FEP to surmount, despite ongoing work to
perfect it. It is, nonetheless, extremely exciting, as it represents a uniquely
large advancement in the theory behind theories of cognition, learning, and
more.

Some sources referred to in this section are the following:

For the maths behind FEP, see this article, which is somewhat friendly
to non-maths people and fairly well explained: Bogacz, 2017. A tutorial on
the free-energy framework for modelling perception and learning. Journal of
Mathematical Psychology, 76(B), 198-211.

For a physics based, but non-mathematical, overview of FEP, see: Fris-
ton, 2010. The free-energy principle: a unified brain theory? Nature Reviews
Neuroscience, 11(2), 127–138.

For an article with more focus on the psychological implications of FEP,
see: Freed, 2010. Research Digest. Neuropsychoanalysis, 12(1), 103-106.
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Wired wrote an article exploring FEP in 2018, located here: The Genius
Neuroscientist Who Might Hold the Key to True AI.

4 Markov Processes

4.1 Inference Revisited and Markovian Priors

Previously, we took pains to note that there is no necessary requirement
of ‘correctness’ placed on Bayes’ theorem. Bayesian inference usually makes
sufficiently good single inferences given a sufficiently good prior. However,
this prior could be a single idea, not necessarily perfected over time; simil-
arly, the inference could be quite uncertain.

There is more than one way to infer the underlying dynamics of a system,
and luckily, for some, we can utilise notions of temporality more explicitly.

A Markov process is a system that hides a true state X behind an output
Y , in such a way that the current time-step t depends only on the previous
time-step t−1. It is thus a ‘memory-less’ system. We performance inference
on these systems using Markov chains or Hidden Markov Models. Often,
Markovian inference is in the form of finding the truth—what is X if I
know Y ? It could also be in the form of building knowledge to predict
something—if I know Yt, and can estimate Xt, what can I say of Xt+1?

As was stated, we use Hidden Markov Models (HMMs) to perform infer-
ence on such systems. In a HMM, the following rule is true, such that this
is the only useful way to work with these systems:

x̂t = P (Xt = xt | Xt−1 = xt−1),

or, that our estimate of x at time t can only be from the prior probability
of Xt being some value given the previous value of Xt−1, xt−1. This is
a formalism of mine, rather than an algorithm—this prior remains to be
found.

We can do so using a recurrence relation. In the first tutorial from day
four, this is defined as follows:

P (xt | y1:t) = Z−1 · P (yt | xt) ·
xt−1∑

P (xt | xt−1)P (xt−1 | y1:t−1).

What this means is—given all the measurements, or observations of a
system’s output, we have made thus far, we can predict what the state at
time t will be. We build an ‘intuition’ for how the system behaves over time,
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in an effort to connect measurements to states and thus states to successive
states.

4.2 As Compared to Bayes’ Theorem

There are clear similarities to Bayesian inference, despite key differences.
Both make inferences given a prior. Both attach a quantified, rigorous idea
of uncertainty to their estimates of some latent variable. In some cases,
Bayesian inference builds a prior over time. The key differences are primar-
ily mathematical. A Markov process is necessarily only defined relative
to the time-step directly previous—nothing more, nothing less. An iterat-
ive Markovian model can overcome this, but this has implications for how
Markov chains behave and how they are formulated.

Bayes’ theorem has more flexibility in this regard—a Bayesian prior (and
the resultant relationship it describes) can be built over time, as well as over
many variables and non-linear relationships between states. I recommend
looking into graph representations of Markov chains and Bayesian Networks
in order to see this in greater detail—Markov chains are weighted, sometimes
cyclic, graphs; while Bayesian Networks are necessarily acyclic, and edges
are given probabilistically, in a tabular fashion.

In fact, Markov chains can be described as Bayesian processes, implying
Bayes’ theorem is a generalisation of how HMMs and Markov chains behave.
We will prove this now.

Take our Bayesian inference with evidence, P (I | O). We have said
this infers a hidden variable of a system given an observation. We have
previously stated this to be various things, including connecting a sound to
the location it came from. Let’s say that we are inferring the value of a
hidden variable x given some observation y—in which case it would be wise
to rewrite it as

P (x | y) =
P (y | x) · P (x)

P (y)
.

Without loss of generality, we can introduce a temporal context into the
inference, such that we are inferring x at time t. This entails also giving y a
temporal context, although it is worth stating this could be time-invariant,
i.e., we get one observation and it stays constant. We now have the equation

P (xt | yt) =
P (yt | xt) · P (xt)

P (yt)
.

Assume now that we want to iterate over times t to make inferences
about x at multiple time-points. This has a few consequences. We will
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take a series of measurements in the system, in such a way that we wish
to connect each individual inference with a measurement. However, these
measurements build, and they are relevant to the dynamics of the system
as we are inferring them. They shape our prior, which is built on previous
inference.

We can reuse our Markov formalism defined previously to get an idea of
what that would look like. If we cared about all previous values, but the
system was memory-less, we would have the sum over all inferences given
their evidence, but not any previous inferences. This yields

P (xt) =

xt−1∑
P (xt | xt−1).

We must also pay careful attention to how this prior was developed
through time. This intuition for the inference of xt itself came from previous
measurements. As a result, due to these iterations, we must ‘reintroduce’
Bayes’ theorem to the prior term. We can achieve this by basing the prior
off of all the previously calculated posteriors, or, considering the inference
at each time-point given all the previous evidence. This is now

P (xt) =

xt−1∑
P (xt | xt−1)P (xt−1 | y1, y2, y3, . . . yt−1).

If we were iterating in such a way as to give rise to the above prior, we
would necessarily be considering all model evidence (or measurements) as
we build our prior. Following in how we built the prior until t, the posterior
at t is

P (xt | y1, y2, y3, . . . yt).

Altogether, we have recovered the following:

P (xt | y1:t) =
P (yt | xt) ·

∑xt−1 P (xt | xt−1)P (xt−1 | y1:t−1)
P (yt)

.

We can say that P (yt) is proportional to some normalisation constant
Z—the integral across the entire distribution. This will give us our final
equation, and as such, we have found our recurrence relation

P (xt | y1:t) = Z−1 · P (yt | xt) ·
xt−1∑

P (xt | xt−1)P (xt−1 | y1:t−1).
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4.3 Kalman Filters

The Kalman Filter is a specific implementation of the HMM developed
and refined by Rudolf E Kálmán in the early 60’s, with the immediate effect
of improving navigation technology in NASA’s Apollo Space Programme. It
considers the case where the HMM’s latent and observed variables come from
Gaussian distributions and all transitions are linearly determined. There are
two equivalent ways of thinking about it—one is the single prediction and
correction step, and the other is a time continuous version arising from
iterating the previous process. I’ll go over both, with the former appearing
first.

We have the following equations:

x̂−k = F · x̂+k−1 +B · uk−1
ỹk = zk −H · x̂k
x̂+k = x̂−k +Kk · ỹ.

Now we’ll walk through the parts of this equation. x̂−k is the prior es-
timate of xk. It comes from our perfected posterior estimate of xk−1 times
F , where F is our transition rule, determining xk−1 to xk. B · uk−1 comes
from our ‘control’—these are simply inputs, such as those in a controlled
linear dynamical system. Our next equation gives the error between our
true measurement zk and what our measurement would be if the underlying
state were actually x̂−k . H is the rule that transforms state to measurement,
so we are ‘matching units’ here. If H is known and this error is zero, then
we are confident x̂−k is correct. If not, then we adjust according to the third
equation, where Kk is the Kalman Gain. It simply adjusts our estimate in
an appropriate way, so as to get our posterior estimate, x̂+k .

There is additional complexity in these equations, which has been left
out for the purposes of this document—specifically, usage of the covariance
matrix P . If one were ever to use this model, I would encourage them to
use this basis of understanding to look further into such details.

If we iterate this process over all k, we’ll get a slightly different looking
form for the Kalman filter. It does the same thing, it simply presents it in a
different way. This is the well-known EM algorithm. This essentially places
a maximum likelihood estimate onto the Kalman filter estimate. The EM
algorithm jointly estimates the parameters of the model of the state, as well
as estimates of the states themselves. The E step is a Kalman filter, which
uses the current estimates to predict the new states. The M step uses this
result in an MLE procedure to obtain the parameter estimates. That’s the
high level overview.
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4.4 Kalman Cognition

Does the brain implement a Kalman filter? There is some amount of
controversy to this question. Conceivably this is because now we’re trying
to put specifics on what the brain does, when we don’t exactly know those
specifics. This is the question that FEP tries to address—it adds imple-
mentation details to Bayesian cognition. In general, when we ask questions
like this, we are trying to use our human theories to characterise cognition,
with no guarantee that cognition follows the statistical or mathematical
formalisms humans actually use.

Metaphysics aside, we can be sure of a few things. We know the brain
performs inference in the Bayesian sense, creating hypotheses about hidden
variables based on model evidence, in order to connect the observation to
the cause. The brain forms inferences about the state of the system it
is measuring, perfecting those inferences through time, as it learns from a
system. We know this form of carefully curated Bayesian inference is similar
in principle to the Kalman filter, as was previously examined.

Certain theories of cognition are not only compatible with Kalman Filter-
ing but are indeed formally equivalent, meaning the mathematical expres-
sions reduce to each other under certain transformations or assumptions.
Predictive processing, a model for how the brain handles prediction error
and correction of model inference, is one such theory. The foundation for
it was developed in 1997 by Rao and Ballard, and they stated the theory
formally in 1999. It’s similarities to Kalman Filtering can be examined by
looking at the equations laid out in following article: Rao and Ballard, 1997.
Dynamic Model of Visual Recognition Predicts Neural Response Properties
in the Visual Cortex. Neural Computation, 9(4), 721–763. Equation 2.3
from this paper is the following:

r̂(t+ 1) = r̂(t) + k1 · UT · (I − Ur̂(t)) .

Here, r̂(t + 1) and U are (in the language of FEP) some internal states
representing an input, while I is a sensory state, or an input. We want to
infer the optimal representation (perhaps a firing pattern) that allows us to
reconstruct I. So, this equation describes the process by which an optimal
neural representation is found for a sensory input. Predictive process thus
introduces a neural level implementation of model building. U is a net-
work weight and r̂(t + 1) is therefore the prediction, or the estimated best
representation at the next time-step.

Compare this with the Kalman filter and the similarity will begin to be-
come clear. In particular, we’ll sketch out a proof that these two components
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are equivalent to one another.
We’ll first take our Kalman state estimate below:

x̂−k = F · x̂+k−1 +B · uk−1.

We can apply the Markov principle to say that, without loss of generality,
the prediction step takes the same form:

x̂−k+1 = F · x̂+k +B · uk.

Under certain assumptions our transition matrix may go away, yielding

x̂−k+1 = x̂+k +B · uk.

We’ll consider the definition of control as being error correction, as in a
controlled dynamical system, where the error is the distance from a goal. In
such a case, the term for the optimal synaptic weight, k1 · UT · (I − Ur̂(t)),
becomes equivalent to our control input, and as such, the following is true
when our Kalman estimate relates to optimal neural states:

r̂(t+ 1) = r̂(t) + k1 · UT · (I − Ur̂(t)) .

With this best estimate, we can indeed determine exactly ‘good’ how it is.
What Predictive Processing does is find the error associated with this

estimate, and propagate it through the network in order to correct the es-
timate. This can be modelled exactly as a Kalman filter would adjust its
own inference (the form of which we’ve shown is more or less equivalent).

This proof was rather informal (for my mathematical sensibilities, al-
most to the extent of insult), but it’s all that’s necessary to gain an intuition
about where Predictive Processing invokes Kalman filtering. For more de-
tails I highly recommend the above paper, as well as Rao and Ballard, 1999.
Predictive coding in the visual cortex: a functional interpretation of some
extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87.

Given all this, predictive processing isn’t the whole story, and so neither
is Kalman filtering. It couldn’t be—as we examined, the Kalman Filter is
limited in its inferential capabilities. In the case of non-linear, non-Gaussian
data, such as the environments the brain often finds itself in, it needs a more
powerful mechanism for inference, like Bayesian Filtering—filtering in this
case being recursive adjustment of a learned variable, such as what Kalman
derived, or what the brain does in order to learn good inferences. As for
Predictive Processing, it is rather a useful (and, so far as we know, correct)
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theory—however, it has its limitations. This error signal is poorly under-
stood, and certain proposed implementations like neural backpropagation
are controversial, in so far as being deemed impossible by many. The com-
putational complexity of many theoretical implementations is very high, to
the point of being intractable, even for the brain. It’s a good theory—but
there’s more to it than just that; so we keep searching.

Work in this field—biological, and more detailed theoretical, implement-
ations of Bayesian Cognition—is currently ongoing, with the matter far from
being settled.

5 Ideas about Reward

5.1 Game Theory and Formal Notions of Payoff

While this is not strictly relevant to understanding Week Two content,
I think it’s a good way of stepping into the world of mathematical quanti-
fication of behaviour.

Can we indeed quantify behaviour? Consider a game of chess. There are
lots of possible moves, but only a small subset of those moves makes sense.
In this way, chess games often follow patterns; in the same way, human
behaviour is predictable to within a degree of certainty.

First developed by John von Neumann in 1928 when he published the
paper On the Theory of Games of Strategy, it did not reach truly wide-
spread usage until the contributions of John F. Nash in his 1951 article
Non-Cooperative Games. In this paper, Nash defined his ‘Nash equilib-
rium,’ and proved that for any game with a finite set of actions, at least one
Nash equilibrium must exist.

Nash equilibrium is achieved when a player can no longer increase its own
expected payoff by changing its strategy while the other players keep theirs
unchanged. This means that in competitive games, when Nash equilibrium
is achieved, there can be no greater expected payoff—and thus reward is
maximised for each player.

What is payoff? Usually synonymous with reward, it is defined by Game
Theorists as a reward driving action. We can model, using Game Theory,
how the expected reward and decisions made by players relate to each other,
so as to gain insight into decision making. An interesting, if somewhat
apocryphal, story is that John Nash originally entitled his work ‘Governing
Dynamics,’ presumably because he knew the import of his work—formal,
comprehensive notions of reward would yield the very dynamics governing
behaviour and decisions. Indeed, game theory has found its most spectacular
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usage in Economics, where it is used to predict how people will behave given
a pool of resources (some market). Four Nobel Prizes have been awarded
for the application of game theory to Economics.

5.2 Markov Decision Processes

We can build on our previous discussion about Markov chains to intro-
duce our first formal look at reward—the Markov Decision Process (MDP).
MDPs are an extension of Markov chains; the difference is the addition of
actions and rewards. With no action possible (e.g. the observer must wait
for a new observation) and no reward is present, and MDP reduces to a
Markov Chain. Decision making can be modelled by a Markov process for
two reasons—often we must integrate evidence to guide policy making, and
our decisions (or actions) are often based solely on the current state of some-
thing, in the sense that though we may gain a sense of what actions are good
(just like Markovian inference builds a prior) we often base a decision on
the current state of the system we are acting on.

MDPs must not only infer variables to guide action, but also determine
what a good action is. We now consider our action in addition to the current
state, and gather evidence from measurements to infer the state. In this case
we must consider action as a transition, because there is often a change in
state based on our actions. Reward, in such a case, may be moving the
current, inferred state to a desired state.

An MDP is dependent on four things. First we have the state space S
and the action space A. We have the probability of transition respective
to action, P (s, s′). We can also write this as the probability of a switch to
an intended state st+1, P (st+1 = s′ | st = s, at = a), or the probability of
st+1 = s′ if our state and action equal some particular values. Finally, we
consider the reward associated with this action, R(s, s′).

Ultimately we aim to find a function for policy making, often denoted by
π(s), which will give the relationship between current state and best (most
rewarding) action. Resultantly, we want π(s) to maximise our cumulative
reward. This policy will guide the decisions we make. We consider reward
as being based on a transition between states, in such a way that we wish to
control the system with our actions. In the context of FEP, this transition
to s′ is desired because it makes s, which doesn’t match our internal model,
change to s′, which does; the associated reward is a small free energy.

The first step will be to define ‘reward.’ We can’t use the payoff defined
by Game Theory, as these are not games—there is no competition. We
may use the Bellman model for MDP, which emphasises not necessarily
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reward but return, which is the cumulative reward associated with each
state. Return G is defined as the following:

Gt =
N∑
i=0

γ ·Rt+i+1,

where our short term reward R for a given action and state is given by :

Ra,s = E [Rt+1 | St = s,At = a] .

Consider the reward as feedback, which occurs after an action is taken
and a resultant state transition happens. For generality, we’ve avoided using
a specific definition for R. This recursion holds true no matter what we
define R to be.

In our return G, note our variable γ or the discount on our reward. This
ensures convergence. Beyond the mathematical utility of it, it gives our
agent (a unit in a ‘behavioural’ simulation who is making decisions) a sense
of priorities—should it act for future or immediate reward? Do we want
hesitancy or impulsiveness? Anxiety or recklessness? This is a parameter
that must be tuned to find an optimum in the middle.

From our state, action, and reward we can calculate a value function
which tells us how good a state and a corresponding action would be, or in
other words, how good is it to be in a particular state, and how good is it to
take a particular action. It informs our agent of how much reward it should
expect if it takes a particular action in a particular state. The Bellman
equation for state value V (s) and action value Q(s, a) are considered jointly
but within separate equations. It is related to our return given our state. It
looks like this:

Vπ(s) = Eπ [Gt | St = s]

Qπ(s, a) = Eπ [Gt | St = s,At = a] .

Here, A is our ‘advantage’ function. That isn’t too important yet. Taking
into account our policy, this value function tells us how good it is to be in
state S according to our policy.

Once again, we seek to find a policy for choosing action that maximises
both our state and action values. To do this, we maximise our return, so we
maximise our cumulative reward.

The algorithm for this entails an iterative, two step value update and
policy update. There are some variants that combine this into one step, but
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it would be best to introduce them separately for clarity. Let’s expand our
rules to the following:

Vπ(s) = E [Rt+1 + γ · V (st+1) | St = s] .

The Bellman equation for value V (s) is related to our reward given our state,
and calculates the expected reward at t + 1 plus the discount of our value
for the state at t+ 1, given our current state. What this equation means is
the value at St = s is the reward we get from transitioning out of that state,
plus a discounted average over the possible future states, where the value of
each possible future state is multiplied by the probability that we land in it.

We also have for action:

Qπ(s, a) = E [Rt+1 + γ ·Q(st+1, at+1) | St = s, A = a] .

We have an expression for the optimal state and action values called Bellman
Optimality Equations—they are derived from the following:

π∗ = arg max
π

Vπ(s) = arg max
π

Q(s, a).

An expression for this equation, in terms of V and Q, can be found in the
form of Bellman Optimality Equations. I’ll leave it to you in case you’re
interested in enquiring further.

We may end up with something like this for our policy:

π(s) = E

[ ∞∑
0

γ ·Rat(st, st+1)

]
.

Breaking this equation down, we will see a number of interesting things. To
begin with, our policy function only cares about the expectation E, or most
likely value (generally a mean), of the cumulative reward. Variance in our
reward is often disregarded. We also see that the reward is based on this
transition between states in such a way that we wish to control the system
with our actions.

5.3 Reinforcement Learning

What about inference for reward construction? Consider an MDP where
certain probabilities or rewards are unknown. Rather than infer our prior
to infer our posterior, which would be possible, but would be rather silly,
the problem becomes an example of Reinforcement Learning (RL)—in RL,
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exploration is incorporated into the problem of reward driven action. This
is another reason why we began with MDPs—they bridge inference with
reward, so we can finally arrive at reward mediated learning.

RL inherits all the interesting ideas about reward and decision making
that MDP has, with additional components that often correspond to real
world complexity. Let’s begin first with exploration. We are considering a
landscape or a problem where the reward for an action is unknown to the
agent. We are forced then to sample our landscape so as to form ideas about
what the reward associated with certain actions is, or, to explore our options.
This is the learning portion of RL—building a model of the environment so
as to find rewards associated with certain actions on certain states. Recall
the definition of policy π—this learning process give us a model from which
we can construct a policy.

We seek to learn a model H such that we can create pairs of different
observations and states,

Ht−1 = ((s1, y1), . . . , (st−1, yt−1)).

Based on this model, we can reconstruct the likely reward from applying an
action to a state by basing our reward off of our observation and inferring
the associated state. Rt becomes some function of our observation R(yt),
associated with an inferred st. We need to gather enough observations to
build this model—this comes from exploration.

In the Second World War, the question of ‘how much to explore or ex-
ploit’ vexed Allied Scientists to such an extent that they proposed sending
the question to German Scientists too, as a means of distraction. Luckily,
RL gives us a way of looking at exploration formally. We saw so-called
‘greedy’ and ‘ε-greedy’ methods in the RL tutorial on Friday, which both
performed sub-optimally—greedy methods settle on an action that is not
in fact optimal but which appears to work ‘well enough,’ while ε-greedy
methods over-encourage exploration, to the extent of missing maximising
reward in the interest of continuing to search. Neither is good. We need
an optimum in between exploration to identify something that is actually
sufficiently good, and exploitation to take advantage of that when we find it.
We defined the solution to this balancing act as ‘decaying ε-greedy, which
occupies a middle ground between the two.

We need to determine the proper form of learning necessary to integrate
evidence appropriately, before our decreasing likelihood of exploration causes
us to settle on a sub-optimal solution. In order to do this, we could use
Thompson sampling, which samples from the posteriors we create about
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rewards given some action taken. So, in a sense, we are using Bayes’ theorem
to guide learning, meaning the beginning scenario of inferring a prior to
infer a posterior wasn’t that silly. However, we’re doing it in a very specific,
guided way, and we’re crafting a prior iteratively based on our experience,
in an effort to then choose the best future actions. This may remind you of
how Markov chains work, and how Bayesian cognition functions.

To begin with, all actions are assumed to have a uniform (or equal at all
points) distribution of reward probability. We have no sense of best action
or possible reward, so we assume we know nothing by showing no prefer-
ence. For each observation obtained from an associated action, a reward is
generated, and based on the reward a new distribution is generated with
probabilities of reward for each possible action. We may get a peak associ-
ated with the actions we have taken and no change for actions we haven’t
tried yet. Further observations are made based on these prior probabilities
obtained each round, which then updates our reward distributions. After
sufficient observations, each action will have a reward distribution associ-
ated with it which can help the player in choosing the actions wisely to get
the maximum reward possible.

What this means is we sample our landscape, and as observations are
gathered, the distribution is updated according to Bayes’ theorem.

Mathematically, there’s quite a bit of set up to cover, so we’ll move
on to the other interesting components of RL for the time being. Here
is an extended overview of the mathematics behind decaying ε-greedy and
Thompson Sampling: A Tutorial on Thompson Sampling.

We have an alternative to ‘policy learning,’ which estimates our value
function as above, by revising our policy that maps action to reward. We
can use ‘value learning,’ which is subtly different, in that it learns a value
function without a prior. In fact, because it is learning without forming a
model of the environment, we can disregard our memory—we no longer care
for what we have learned. We know what a memory-less model that only
gives one action for one time-point is—it’s an MDP.

Q-learning, an RL algorithm, implements our Bellman equation in the
previous section. We perform an action to explore our landscape. A Q-table
is created, listing actions and their associated rewards through time, and we
build our function Q(s, a) from this. Imagine a grid environment, where the
agent is moving towards a goal, or a real life analogue of a mouse working
through a maze. The agent will take an action (move left one unit) and find
the associated reward. This goes into the Q-table, which records the action
at the place and the reward. Similarly, the mouse may turn left, find a dead
end, and record the action, the place, and the reward (or lack thereof). We
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put this into our Bellman equation as an action mapping to a reward. This
requires the same exploration as our policy-learning, but the actual learning
itself takes a different form—this is a subtle but important difference. We
do this iteratively to craft our Q function. Once this function is estimated
properly, we can decide on a likely best series of actions (e.g. the best path
to take out of the maze).

The final component of RL is looking at an adaptation of Q-learning,
which involves planning. Closer still to what the brain does to learn and
make decisions, it combines inference with prediction in a dynamic fashion.
In fact, the most common implementation is called Dyna-Q. Planning is
done while learning and interacting with the environment, in such a way
that determining possible models can help improve a policy.

We noted that Q-learning has no knowledge of our reward functions. It
observes or infers s, takes an action, observes or infers s′ and the associated
reward. It updates the Q function with what the agent has learned.

In Dyna-Q, we also utilise a model of our reward function, and the trans-
ition matrix defining the probability of transitioning from s to s′ if we take
action a. The agent learns this by exploring the landscape, and addition-
ally, the algorithm ‘plans’ by allowing our agent to simulate the actions it
could take—almost as though it were planning in its head. This perfects the
model the agent learned by generating information and integrating evidence.
The agent performs a model learning step by randomly selecting a previ-
ously observed state-action pair, then asking the crafted model about what
happens if that action is taken and s moves to s′—what is the associated re-
ward? Using this simulated transition, Dyna-Q updates our reward function
by Q-learning, as though it were a real experience derived from exploring
the environment. We have our agent try out actions without actually try-
ing them, instead applying our model as we learn it, to determine whether
those actions would be good ones before they are taken. If we plan ahead
effectively, Dyna-Q can drop the exploration needed by a factor of ten—a
90% reduction in the number of actions needed to get to a goal.

Dyna-Q unifies planning, learning, and acting, in a way that is very
similar to what the brain does. The paper Kanai et al, 2019. Inform-
ation generation as a functional basis of consciousness. Neuroscience of
Consciousness, 5(1) argues that this concept—the generation of informa-
tion, possibly counterfactual information for the purposes of planning and
decision evaluation—is integral to explaining why consciousness has arisen
in humans. They mention Dyna-Q specifically when they are building the
groundwork to formalise information generation, saying the following:
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‘a model based approach [to learning] allows an agent to adapt
to new goals flexibly because it can use the internal model to
optimise its behaviour without trial and error... the ability to
generate information enables an agent to perform mental sim-
ulations for planning future action sequences, which would be
otherwise difficult only with a collection of reflexive behaviours.’

Is RL conscious? It may seem nonsensical on the surface, but we may
ask a different question that is valuable for understanding the capabilities
of our model—does RL have a quality that consciousness also possesses? In
maths we often prove the relationships between structures and objects, in
such a way that we can say with certainty ‘every object X has quality Y ;
no object A does B; all things that do J are L objects.’ This has made
it necessary to define the relationships between things, and I would answer
the question with an idea from such proofs—information generation is a
necessary, but not sufficient, condition for consciousness. One can perform
some information generation and not be conscious (it is insufficient), but
nothing that can’t generate information can also be conscious (it is neces-
sary). Something else (possibly many other things) are needed to constitute
a sufficient set of qualities. The authors avoid giving an answer, opening the
floor to the debate. Some metaphysicians and panpsychists would disagree
rather intensely with me.

As for the latter question, the answer is thus yes, speaking to the prom-
ises of RL in neuroscience. We can not only use this to model cognition
and connect simulation insights to reward and learning in the brain, but we
can define other behavioural rules and evaluate how these impact decision
making. A colleague of mine here at Stony Brook has done some interest-
ing work using agent based simulation (with evidence collection rules) to
look at the spread of false memories and collective delusions—see the pa-
per: Luhmann and Rajaram, 2015. Memory transmission in small groups
and large networks: An agent-based model. Psychological Science, 26, 1909-
1917. RL has been used to investigate FEP as an effective learning rule—see
this paper: Friston, Daunizeau, and Kiebel, 2009. Reinforcement Learning
or Active Inference? PLOS ONE, 4(7). There are quite a lot of ways to use
agent based simulations in psychology and neuroscience, because ultimately,
just like humans, agents behave.

All this makes RL a compelling new modelling technique for questions
in neuroscience—when the field gets around to implementing it.
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5.4 Biological Reward-Based Learning

On the subject of neuroscientific ideas of reward, reward based learning
isn’t confined only to RL—in fact, it began with the brain.

Reward is integral to classical conditioning (a form of associative learn-
ing)—reward, in fact, drives conditioning. Learning was Pavlov’s main re-
ward function—one set of dogs observed a bell ring and a sausage follow,
and another, a bell ring without consequences. The bell begins to predict
the sausage in the former group, whereas the latter are decidedly neutral
about bells. No action is strictly required, as the sausage happens with or
without action, but this is a clear example of how reward mediates learning.
In general, in associative learning, a person learns an association between
two stimuli only when the events are no longer neutral. Eventually, the
neutral stimulus elicits a response on its own, as a result of being paired
with a reward. We come to expect a reward when the stimulus is presented,
because this is the model we have learned of the world.

In other cases, we know we may exert an influence on whether that
stimulus or event arrives, and so reward becomes associated with that action
too. Rescorla and Wagner, Yale psychologists, later formalised these ideas
with proper mathematical equations. This model is now called Rescorla-
Wagner learning.

For a more extended overview of this, I would recommend Schultz, 2015.
Neuronal Reward and Decision Signals: From Theories to Data. Physiolo-
gical Reviews, 95(3), 853–951. Otherwise I want to introduce some specific
analogues to what we discussed above, beginning with ‘is there a relationship
between model learning, models of reward, and error control?’

The first thing we may observe is that the error signal associated with
learning, adjusting our ideas or representations of the world around us (in-
ternal states in FEP, prior models in Bayes’ theorem, environmental models
in Dyna-Q) has been observed to coincide with dopaminergic neural firing, a
neurotransmitter associated with reward. Note my phrasing here: we don’t
know how error is handled in the brain, and in fact, certain theories like
backpropagation are extremely controversial. However, certain experiments
present a stimulus which the experimenter knows will cause an error in some
model, and then perform scans on the brain; in these experiments, we often
observe a dopaminergic signal in the brain, suggesting that dopamine and
dopaminergic neurones are related to error encoding.

Carrying on with classical conditioning, this makes sense—our model
to begin with is that the bell and the sausage are not connected. Nothing
in our experience has suggested we are wrong to think so. Then, a bell
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rings and a sausage appears. While food is always connected to reward,
there is another facet of this that is relevant—our model was wrong. We
infer that the bell and the sausage were connected, and we may be sure of
it given enough observations of bell and successive sausage. The error in
our model coincided with dopaminergic firing. Is it merely a coincidence?
Or is there a clever evolutionary explanation for it—correcting a model is
rewarded highly, because having a correct model keeps us alive. We can
spot the bear, or escape the maze, with a correct model.

The trouble with this is, Bayesian cognition does not explicitly account
for reward or error reduction. This should be evident if one were to think
about what things like FEP or Predictive Processing are trying to say—the
reward isn’t reward, strictly, it is minimising surprise. These two ideas
aren’t necessarily incompatible, but FEP disregards reward entirely by say-
ing everything comes down to minimising surprise. Our reward isn’t dopam-
inergic pleasure or joy—it is matching expectations to reality by moving
either one (through learning, or action, respectively). This is complemented
by the observation that, if we refer to the paper linked in the above section,
Friston has replaced reward with free energy in his RL simulations. Broadly,
these two theories—Bayesian cognition and reward-based learning—are sim-
ilar in principle, but the details differ tremendously.

Schultz has another great 2016 article about reward and prediction error,
in the non-Bayesian sense, called Dopamine reward prediction error coding.
Dialogues in Clinical Neuroscience, 18(1), 23–32.

Miller, Kiverstein, and Rietveld have a 2020 article called Embodying
addiction: A predictive processing account. Brain and Cognition, 138 dis-
cussing a Bayesian re-evaluation of reward based theories (specifically, the
nature of addiction) in cognition.

Does the brain do reinforcement learning? Certainly there are analo-
gies—a model is formed of the environment, learning happens in parallel
with planning, and actions are considered to cause transitions to better, or
intended, states. Temporal-Difference learning was developed for RL agents
as an algorithm that models the expected reward of an action or stimulus
given a model, and so there is comparison to be made there. Temporal-
Difference learning is descended directly from the Rescorla-Wagner model.

There is some hidden complexity in the brain, though. For one thing, our
environments are not static, as in RL—they are fiercely dynamic, with states
changing in highly non-linear ways, independently of our actions. People are
also not entirely reward oriented—we often do anomalous things or nothing
at all, which is in direct conflict with RL. When placed in a dark room, there
is no reward associated with taking any action—there is nothing to predict,
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and so there’s no prediction error. In that case, why don’t we stay still, and
do nothing? We could say that the reward in this case is exiting the room,
and so an RL agent would be motivated to continue exploring and finding
optimal solutions to the problem, like perhaps discovering food outside the
room—but this is not compatible with the Bayesian idea of prediction error
driving action. Moreover, reward is still poorly defined in many scenarios,
from a purely quantitative point of view.

Clearly there are a lot of open questions on modelling consciousness.
This actually a good thing—after all, if we were so simple as to understand
our own consciousness, we probably wouldn’t be very conscious at all. If you
are interested in this to a greater extent, I recommend the article Neftci and
Averbeck, 2019. Reinforcement learning in artificial and biological systems.
Nature machine intelligence, 1, 133-143.

6 Conclusion

The brain is a statistical machine. It learns how to make the best infer-
ences possible in order to cope with a dynamic, complex environment, and
then uses those inferences to learn about and act on the environment it is
in. Prior perfection, posterior estimate. There are thus direct analogues in
known statistical algorithms, and just like we can model learning, reward,
and inference using maths, we can explain how our brain has the power to
be cognitive. We have examined these techniques both as they relate to
data analysis and as they relate to cognition, so that you might understand
both as data driven neuroscientists, and use one to inform the other. This
will give you a unique tool set to do high-impact research, of the sort that
answers fundamental questions and asks interesting new ones; I truly hope
you are as excited as I am about the world of opportunity this affords you.
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